On the sum of signless Laplacian eigenvalues of a graph

نویسندگان

  • F. Ashraf
  • G. R. Omidi
  • B. Tayfeh-Rezaie
چکیده

For a simple graph G, let e(G) denote the number of edges and Sk(G) denote the sum of the k largest eigenvalues of the signless Laplacian matrix of G. We conjecture that for any graph G with n vertices, Sk(G) ≤ e(G) + k+1 2 for k = 1, . . . , n. We prove the conjecture for k = 2 for any graph, and for all k for regular graphs. The conjecture is an analogous to a conjecture by A.E. Brouwer with a similar statement but for the eigenvalues of Laplacian matrices of graphs. AMS Classification: 05C50

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs

Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...

متن کامل

Seidel Signless Laplacian Energy of Graphs

Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...

متن کامل

Some results on the energy of the minimum dominating distance signless Laplacian matrix assigned to graphs

Let G be a simple connected graph. The transmission of any vertex v of a graph G is defined as the sum of distances of a vertex v from all other vertices in a graph G. Then the distance signless Laplacian matrix of G is defined as D^{Q}(G)=D(G)+Tr(G), where D(G) denotes the distance matrix of graphs and Tr(G) is the diagonal matrix of vertex transmissions of G. For a given minimum dominating se...

متن کامل

The Signless Laplacian Estrada Index of Unicyclic Graphs

‎For a simple graph $G$‎, ‎the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$‎, ‎where $q^{}_1‎, ‎q^{}_2‎, ‎dots‎, ‎q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$‎. ‎In this paper‎, ‎we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...

متن کامل

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

Ela on the Main Signless Laplacian Eigenvalues of a Graph

A signless Laplacian eigenvalue of a graph G is called a main signless Laplacian eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. In this paper, some necessary and sufficient conditions for a graph with one main signless Laplacian eigenvalue or two main signless Laplacian eigenvalues are given. And the trees and unicyclic graphs with exactly two main signless L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013